Journal of Computational Physi&§0,394-424 (1999) ®
]
Article ID jcph.1999.6185, available online at http://www.idealibrary.conl DE &l.

Solution of Time-Dependent Diffusion
Equations with Variable Coefficients
Using Multiwavelets

A. Averbuch¥ M. Israelif and L. Vozovof

*School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
and tFaculty of Computer Science, Technion, Haifa 32000, Israel

Received February 3, 1998; revised December 21, 1998

A new numerical algorithm is developed for the solution of time-dependent dif-
ferential equations of diffusion type. It allows for an accurate and efficient treatment
of multidimensional problems with variable coefficients, nonlinearities, and gen-
eral boundary conditions. For space discretization we use the multiwavelet bases
introduced by Alpert (1993SIAM J. Math. Anal24, 246-262), and then applied
to the representation of differential operators and functions of operators presented
by Alpert, Beylkin, and Vozovoi (Representation of operators in the multiwavelet
basis, in preparation). An important advantage of multiwavelet basis functions is
the fact that they are supported only on non-overlapping subdomains . Thus multi-
wavelet bases are attractive for solving problems in finite (non periodic) domains.
Boundary conditions are imposed with a penalty technique of Hesthaven and Gottlieb
(1996,SIAM J. Sci. Comput579—-612) which can be used to impose rather general
boundary conditions. The penalty approach was extended to a procedure for ensuring
the continuity of the solution and its first derivative across interior boundaries be-
tween neighboring subdomains while time stepping the solution of a time dependent
problem. This penalty procedure on the interfaces allows for a simplification and
sparsification of the representation of differential operators by discarding the ele-
ments responsible for interactions between neighboring subdomains. Consequently
the matrices representing the differential operators (on the finest scale) have block-
diagonal structure. For a fixed order of multiwavelets (i.e., a fixed number of vanishing
moments) the computational complexity of the present algorithm is proportional to
the number of subdomains. The time discretization method of Beylkin, Keiser, and
Vozovoi (1998, PAM Report 347) is used in view of its favorable stability properties.
Numerical results are presented for evolution equations with variable coefficients in
one and two dimensions. © 1999 Academic Press
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I. INTRODUCTION

We present a new numerical algorithm for the solution of nonlinear time-depend:
evolution equations

U = Lu+ N(u)

in finite domains, whereé represents the linear part, aAd(-) the nonlinear part, of the
evolution operator. We focus on linear operators of diffusion type with variable coefficien
For example, in one dimensiah= a(x)aa—;.

In this paper we address the following issues:

—stable time integration method (time discretization schemes with good stability prc
erties);

—efficient computation of operators with variable coefficients;

—efficient computation of global differential operators (for example, exponential fun
tions of differential operators);

—treatment of general boundary conditions (periodic, Dirichlet, Neumann, Robin);

—multidimensional problems.

The present algorithm incorporates several techniques. Fdintleediscretizationwe
employ a new method proposed in [8]. A distinctive feature of this method is the ex:
evaluation of the contribution of the linear part (therefore, the corresponding schemes
labeled as “exact linear partz(LP) schemes As a result, this method has very good stability
properties since possible instability may be due only to the nonlinear term. Typically, 1
stability of time discretization schemes for advection—diffusion equations is controlled
the linear, diffusion, term and therefore these equations require implicit treatment in orde
avoid the use of unreasonably small time steps. In contrast, using the explicit ELP sche
it is possible to achieve stable time steps usually associated with implicit schemes.

Implementation of these new schemes requires the evaluation of functions of op
tors (e.g., exponentials). Computing and applying exponential or other functions of opera
typically require evaluating dense matrices and, therefore, are expensive. An excef
is the case where there is a (fast) transform that diagonalizes the operator. For exafnple
is a convolution (or a circulant) matrix which is diagonalized by the Fourier transform (F1
then the computation of functions of operators can be accomplished by a fast algorithm
example, the FFT.

Differential operators with non-constant coefficients cannot be diagonalized by the F
However, it turns out [6] that a wide class of operators with non-constant coefficients hi
sparse (finite accuracy) representations in the wavelet basis. In particular, computing e
nentials of elliptic operators with variable coefficients in the wavelet system of coordina
always results in sparse matrices. For the present algorithm waul§evaveletbases for
thespatial discretizationThese bases were introduced in [1]. In [3] representations of di
ferential operators and functions of operators in bases of multiwavelets were constructe
discrete version of multiwavelets was studied and used for representing integral operz
in [2].

Multiwavelet bases possess most of the properties of wavelet bases such as vani:
moments, orthogonality, and compact support. However, in contrast with “convention
wavelet bases, the multiwavelet basis functions do not overlap on a given scale anc
organized in small groups of several functions sharing the same support. Again, w
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classes of operators have sparse finite accuracy representations in these bases due
vanishing moments property of the basis functions. These properties make the multiwax
bases a useful tool for solving partial differential equations. In particular, they allow f
accommodating boundary conditions in an accurate and simple manner.

Typically, for smooth wavelets with overlapping support, such as Daubechies’ wavel
[9], accommodating boundary conditions results in a loss of quality of approximation ne
the boundary either due to the loss of the order of approximation or due to the high sensiti
toachangeinthe boundary values (alarge condition number of the corresponding operat
It was shown in [3], by considering representation of differential operators in multiwavel
bases, that the high order of the scheme is maintained up to the boundary.

On the other hand, the multiwavelet basis functions are discontinuous (similar to
Haar basis functions) and may not fit the definitions of wavelets which typically requi
regularity. In particular, representations of differential operators in such a basis do
exist in the ordinary sense. It is possible , however, to construct weak representati
i.e., representations which are accurate up to an appropriate order for a class of sm
test functions, e.gC> ([0, 1]). Such representations appear to be perfectly adequate f
computational purposes.

When a time-dependent problem is solved using an explicit time integration schel
boundary conditions should be imposed, and the values on boundaries must be comy
such that they satisfy the correct time-dependent boundary conditions. In the present ¢
rithm we adopt genalty proceduref [12] to impose thdoundary conditionsThe penalty
term is introduced as a forcing in the evolution equation. Its amplitude is proportional
the difference between the numerical and the prescribed boundary values.

As we mentioned earlier, the implementation of the time discretization method usi
ELP schemes requires applying exponential functions of operators. We also pointed
that functions of operators with non-constant coefficients are sparse in the wavelet sys
of coordinates. However, the speed of evaluation and application of such operatorsin two
three spatial dimensions remains an important consideration in assessing the practicali
ELP schemes. Although the representations of differential operators in multiwavelet ba
constructed in [3], scale properly with size in all dimensions, reducing the constants
operation counts remains an important task.

In this paper we propose a procedure which allows a drastic reduction in the computatic
complexity of multiwavelet algorithms, especially in more than one dimension. The idee
to simplify the construction of the linear operatbin the multiwavelet basis by discarding
the off-diagonal blocks in the matrices which are responsible for the interaction with
neighboring intervals. In effect, the matukin the multiwavelet basis (on the finest scale)
obtains a block-diagonal structure with the block size equal to the number of vanish
momentsk, where the number of blocks is equal to the number of subinterMals,

In order to restore thimteraction between subintervakse developed penalty approach
on the interfacessimilar to that used on the boundaries. The corresponding forcing tel
in the evolution equation has a very simple structure in the physical domain (exponent
attached to the interfaces) which can be described by a few multiwavelet coefficients. /
result, the complexity of the computational algorithmis reduced drastically. For example,
operation count for evaluating @xdimensions (global) exponential functions of differential
operators on the finest scale drops franiN3¢k3) (when the interaction is incorporated
into the operator) to the order @(N9k%®) (when one uses block-diagonal matrices along
with the penalty procedure on the interfaces).
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The paper has the following structure. In Section Il we formulate the problem and ¢
scribe the time discretization method of [8]. Here we also descrifpenaralized scaling
and squaring methofibr computing the operator-valued quadrature coefficients of the EL
schemes. In Section Ill we summarize results of [1, 3] on multiwavelet bases and repres
ing operators in this basis. In Section IV we describe a penalty procedure on the bound:
which ensures the prescribed boundary conditions during solution of a time evolution pr
lem. In Section V we introduce a simplified construction of the operators and functions
operators (without incorporating the interaction between the neighboring subdomains),
a novel penalty procedure on the interfaces which preserves the continuity of the solu
and its first derivative. In Section VI we generalize the algorithm to the two-dimensior
case. We also provide some numerical tests in one and two spatial dimensions.

II. TIME DISCRETIZATION METHOD

I1.1. Mathematical Formulation

We are interested in the numerical solution of nonlinear evolution equations of the for
U = Lu+ N (), in €, (2.1)

whereL = a(x) 8"—)(22 is the linear diffusion operatah/(-) is the nonlinear part of the operator,
u=u(x,t),xeQ=[0,1],d=1, 2, 3,and € [0, T]. The important examples of nonlinear
diffusion equations of type (2.1) are the advection—diffusion equation and, in particular,
Navier—Stokes equations, which can be rewritten in the form (2.1); see [8].

We also supply the initial conditions

u(x, 0) = ug(x), inQ, (2.2)
and the linear boundary conditions
Bu(x,t) =0, ona2, te[0, T, (2.3)

whered 2 is the boundary of the computational regi@n

I.2. ELP Schemes

For time discretization we use the method introduced in [8]. A distinctive feature
this method is the exact evaluation of the contribution of the linear part. Namely, if t
nonlinear part is zero, then the method reduces to the evaluation of the exponential func
of the operator (or matrixJ that represents the linear part. A family of implicit and explicit
schemes called the “exact linear part” (ELP) schemes was derived.

It was shown that such schemes have very good stability properties since the instabili
related solely to the nonlinear term. For example, when explicit ELP schemes are applie
the advection—diffusion equation with the linear operater 86_)(22 the stability restriction on
the time step is\t ~ O(h~1), whereh is the grid size (we recall that for the explicit schemes
the typical condition is\t ~ O(h~2)). Thus, theexplicitELP schemes have stability regions
similar to those of typicaimplicit schemes used in, e.g., fluid dynamics applications. |

this section we summarize briefly the main technique of the ELP method.
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We start by converting the initial value problem (2.1)—(2.2) to anonlinear integral equati
of the form

t
u(x, t) = e"fu(x, n) +/ e LN (u(x, 1)) dt, (2.4)
0

where 0< n < t. Itcan be verified (by differentiating with respectjahat (2.4) is equivalent
to (2.1).

Next, we discretize (2.4) in time. Consider the functigw, t) at the discrete moments
of timet, = nAt, whereAt is the time step. Denotg, = u(x, t,). The discretized equation
reads

M-1
Unt1 = emAtCunfm + At (V Nny1 + Z By Nnu) ) (2.5)

u=0

whereu, = u(Xx, t,), th =nAt, N, =N (u,), andM + 1 is the number of time levels.

The discrete parameten can be chosen arbitrarily in the intervakdm < M. From
the approximation point of view any of these choices is equally good. In the particu
case wheré=2, y =0, andM =1, Eq. (2.5) turns into the explicit scheme known as the
“slave-frog” scheme,

e2At£ -1

Uns1 = €2% U, + AtBoN,, ="
n+l n-1+ AtBoNnq Bo AL

(2.6)
This scheme has been used in computational fluid dynamics; see, e.g., [10]. We do not k
other examples of temporal schemes related to the family (2.5).

The stability analysis shows [8] that the schemes wita 2, in particular (2.5), do not
have good stability properties. From the stability point of view the most preferable scher
are those wittm=1 (t — n = At).

The coefficientsy and B, are the operators. More precisely, they are functions of th
operatorAt L. Denote

-1

eAMLl B (ALL) I (Aw)
Qj(AtL) = —— 1" Ej(AtL) = (2.7)
’ (AtL)] : s
Thus,
-1 e —1-
WO =€ Q=" @X=—F—, .. (28

andE; (x) is a truncated expansion of the exponergfal
Table | gives the expressions for the coefficients of the first-, second-, and third-or
explicit schemesy(=0) in terms ofQ; = Q; (AtL).

11.3. Evaluation of the Operator-Valued Quadrature Coefficients

We will now describe a method that permits us to compute the ope@§os, Q», etc.,
without computing directly the exponentigt'” and the inverse operatoat£)—?1.
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TABLE |
Coefficients of the First-, Second-, and Third-Order Explicit
Schemes:;y =0, Q; = Q;(AtL)

M Bo B Be Order
1 Q: 0 0 1
2 Q1+ Q2 -Q: 0 2
3 Q1 +3Q2/2+ Q3 —2(Q2+ Q3) Q2/2+ Q3 3

A simple way to compute the exponent&i” is to use a first-order Taylor expansion
et~ T + AtL (2.9)

whereZ is the identity operator. The problem with using such an approximation is tha
will result in a loss of accuracy due to possibly large singular valuestgf.
A much more accuratecaling and squaringnethod [4] is based on the identity

e = (/M. (2.10)

Approximating the exponential in the right hand side of (2.10) by the first-order Tayl
expansion gives

x\"

We note that the above approximation is accurate whisrarge enough even thoughs
not small. In the limith — oo the estimation (2.11) is merely exact. It can be shown the
the relative error of the approximation (2.11)%/2n as opposed to the erraf/2 for the
first-order Taylor expansiog® ~ 1+ x.

The scaling and squaring method can be generalized in order to compute the expone
operatorR; (AtL), j =1, 2, ...; see [8]. The principal step here is to express these fun
tions in terms of the functions of a half argument. Based on the formulas (2.7) it is eas!
verify that

Qo(2x) = Qo(X)Qo(X),
Q1(2X) = 3(Qu(X)Q1(X) + Q1(X)),
Q2(2X) = F(Q1(X)Q1(X) + 2Q2(X)), (2.12)
Q3(2X) = §(Q1(X)Q2(X) + Q2(X) + 2Q3(X)),
Q4(2x) = 1—16(Q2(X)Q2(X) + 2Q4(X) + 2Q3(X)),
etc. We note that a functio@; (2x) is expressed in terms of the functioQg(x), k=
0,....,]j.
Below we summarize the modified scaling and squaring method for computation

the operator-valued quadrature coefficients of the ELP schemes. We start by compt
Qo(At1L£), Q1(At L), Qo(AtL L), etc, Aty = 277 At, for someJ selected so that the largest
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singular value of all operato®; (At;£) is less than one. For this evaluations we use th
Taylor series

Qo(ALL) = T + Aty L, (2.13)
QuALL) =T + At.L/2, (2.14)
Q2(ALL) = T/2+ ALL/6, (2.15)
Qs(ALL) = I/6+ At L/24, (2.16)

etc. whereZ is the identity operator andit; =277 At. We then proceed by using the
identities in (2.12) recursively times to compute the operators for the required value of th
argumentAt L. Finally, we compute the coefficiengg, which are the linear combinations
of Q; (AtL) (for example, as in Table | for explicit ELP schemes).

Thus, the computation of the operat@gis reduced to the evaluation of a much more
simple differential operatott £L(x) = Ata(x)%. The numerical procedure for computing
this operator is described in the following sections.

Ill. DISCRETIZATION IN SPACE. MULTIWAVELET BASIS

For space discretization we use expansion of functions into the multiwavelet basis.
basis was introduced in [1]. Representation of differential constant coefficient operator
this basis was constructed in [3].

lll.1. Construction and Properties of the Multiwavelet Basis

In this section we summarize some properties of the multiwavelet bases [1].
Fork=1,2...andn=0,1,2,... we defineVX as a space of piecewise polynomial
functions,

Vﬁ = {f : the restriction off to the interval [2"l, 27"(I + 1)] is a polynomial of
degree lessthakn forl =0, ...,2" — 1, and f vanishes elsewhele (3.1)

The spac&/¥ has dimension and

VEcVk...cVvEkc ... (3.2)
We defineWk, n=0, 1, 2,..., as the orthogonal complement'sf in VK, ,,
VR®WR=Vig Wyl Vy, (3.3)

and note thatV¥ is of dimension 2k. Therefore, we have
VE=VEaWioW e - oWk . (3.4)

We defineV¥ as the union of all subspacey,

o0
VK= [ J VK (3.5)
n=0
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and observe that¥ is dense irL.2[0, 1] with respect to the norm,

1
Il =(f, £)Y2 <f,g>=/0 f (x)g(x) dx.

Let {¢o. ..., #«_1) denote an orthonormal basis #f (scaling functions). Such a basis
can be constructed using the system of the kitstgendre polynomial®; (x), x e [-1, 1].
We define the scaling functiorg, j =0, ..., k—1, as

o V2] +1Pj(2x - 1), x € [0, 1],
P10 = {o, x &[0, 1]. (3.6)

and note that these functions satisfy the orthonormality conditions

1
/ #i (X)¢; (X) dX = g (3.7)
0
The space/ﬁ is spanned by"X functions which are obtained frogh, . . . , ¢x_1 by dilation
and translation,
o () = 2"%¢;(2"x — ). (3.8)

We also introduce an orthonormal bagis . . ., Y1 for W§ such that

1
/0 Vi ()¢ (X) dX = §j (3.9)

(here we drop the indekin our notation). Sinc&§ L V§, the firstk moments of the basis
functionsy; vanish,

1
/ Yi (xX)xMdx =0, i,m=01 ..., k-1 (3.10)
0

This basis was constructed in [1] in the form of piecewise polynomial functions.
The spac&Vk is spanned by "k functions obtained fromyy, . .., ¥_1 by dilation and
translation,

Yhoo =22y 2% —1),  and  supp/fi =l (3.11)

where |l denotes the interval [21, 27"(l + 1)]. The condition of orthonormality of the
basis functions yields

"1
/ Ui COY i 00 dX = 8ij Simnn - (3.12)
0
Thus,

W§ = linear spafy;: j =0,...,k — 1},
. . (3.13)
anllnearspanﬁwﬂ:J =0,....k—1;1=0,...,2" -1}
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TABLE Il
Coefﬁcientshi(jo)

1
ﬁ 0 0 0
V3 1
NG NG 0 0
V35 1
0 a2 PNz °
V7 NeNij VBT 1
82 82 82 82

In view of (3.4), (3.5), and (3.13) the orthonormal system

2 1)

(3.14)

Be={¢j:j=0,....k—BU{yf:j= Lk—1n=01...;1=

spand_?[0, 1]. We refer toBy as the multiwavelet basis of ordefor L2[0, 1].
The relations (3.2) and (3.3) between the subspaces may be expressed via the so-(

two-scale difference equations,

k-1
$i(x) = V2 Z hPe;(2x) + hiPej(2x — 1), (3.15)
=2 Z (976120 +g¢;(2x - 1)), (3.16)
The matrices of coefficients @ = th{?}, H® = {h{"}, GO = (g}, H® = {h{}’} are
analogs of the quadrature mirror f||ters
Several first coefficients” andg” are shown in Tables Il and Il fde=1, . ..., 4. Note

that the coefficients; © depend on the choice of the order
From the symmetry of the functiors (x) and (x) and the relations (3.15), (3.16) it

follows that

hi = (=1, (3.17)
V= (—1)itithgD. (3.18)
TABLE Il
Coefficientsg” for k=1,..., 4

[, Y2 6 A

11 5 /85 Vi V170

N B el PO EE UV SV |
[_ 1 } V2 o L V15 Va2 J1a  2ym 242
Vil wa o a2 o YA 3T 4
22 2v2] | /5 5 2 4J170 434 /85

6v2  2V6 3 5/5  5/5 23 15

L8v/42 8/14 8/42 82
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In the subspac¥¥ the functionf (x) is represented by an expansion

M_1k-1
FOo0 =Y sji¢fx. (3.19)
1=0 j=0
with the expansion coefficients
27"(1+1)
Sji = /2 L feogiodx. (3.20)

The decomposition of (x) into the multiwavelet basis (3.14) reads

k—1 n-12m-1
foo=>" (s})_0¢,- 0+ > dj‘,‘x/rﬂ‘(x)) (3.21)

j=0 m=0 1=0

where the coefficientd}} are computed as

271+
i = /2 L Teovfleodx. (3.22)

This is a collection of % functions fromm=0, 1, ..., n — 1 levels. On the coarsest level,
m=0, there are two sets of functiong; (x) and; (x), supported on the whole interval
[0, 1]. On themth level,m> 1, there are 2k functionswjﬁ‘(x), supported on the interval
[27™, 2™ + 1)].

There is no need to compute integrals (3.22) for all lemeis 0, 1, ..., n. In fact, it is
sufficient to compute only coefficient§ on the finest leveh. In the expression (3.20) we
perform rescaling to the intervaHl, 1] using the relations (3.8) and (3.6). We obtain

1
Sji = Bnj /1 R GLAGLS (3.23)

wheregnj =22+ /27 + 1 is the scaling factoR; () is the jth Legendre polynomial,
and fO &) = f (xO), x» = 27"(&/2+1 + 1/2) so that the interva =[—1, 1] is mapped
to x® =[27"l, 27"(I + 1)] (here we omitted the superscript,” required atf® andx®,

for the sake of brevity). The most accurate way to compute the integral in (3.23) is to |
the Gauss-Legendre quadrature formula

1 k
[ for@d =3 f@p @, (3.24)
- i=1

where 1< § < 1 are the Gauss-Legendre nodes andre the standard Legendre weights.
Thus, given 2k node values of a functio (x) at the local Gauss—Legendre nockélé

X1 —

X =%+ 2 X6+ ), (3.25)

we compute the expansion coefficieafsusing (3.20) and (3.23)—(3.25). Then the values
il can be obtained using the relations between the coefficients on two consecutive le
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(decomposition st§p

S =v2) (hsis" + hiPsTE), (3.26)

T=v2] (@075 + gV, (3.27)

These relations follow immediately from the two-scale equation, (3.15), (3.16), and
expressions (3.20), (3.22).
The inverse transformation from a coarser to a fine scale readscamétruction step

=
=

1
Syt = 7 (hPs + gPdT). (3.28)
i=0
k-1
1
St = N2 (h(l)su +911)d ). (3.29)

o

]:

I11.2. Representation of Differential Operators in Multiwavelet Bases:
The Case of Constant Coefficients

Representation of differential operators with constant coefficients in the multiwave
basis was constructed in [3]. In this section we summarize some results which will be u
in further sections. Since we are interested in the solution of the diffusion equation (2.1)
concentrate on the construction of the second derivative opefé}tcamd the exponential
operatoreAt(@*/9x*)

The operatof = f—; isahomogeneous operator of the second degree, tiatfis(Ax) =
A2L(f)(x). For homogeneous operators it is sufficient to obtain their representations on
finest scale (in theVK subspace). Then representations on all other scales may be obtai
by rescaling (see, e.g., [5]).

Consider a twice (at least) differentiable functidrix). Project this function and its
second derivative onto the subspat that is, expand (x) into the basiga] (x)},

2"—1k-1
FO0 =" siefx. (3.30)
=0 j=0
82 —1k-1
Sz [0 =22 ). (3.31)
1=0 j=0

The problem of computing the second derivative thus reduces to finding the transit
matrices of coefficientsg{} ]ij,

2"-1k-1

=" [oml;; S (3:32)

m=0 j=0
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Since% is @ homogeneous operator, it is sufficient to construct its representafign [

on the coarsest levahl,=0,

1 82
[o1]ij =/0 ¢ () 7741 (X + 1) dx. (3.33)
Then the representation on the lematan be obtained by rescaling
[Ulrr]n} ij = 22n[‘7I—m]ij . (3.34)

The matrix py] gives the representation of the operaogég in VK. We note that for homo-
geneous operators the matrix elements which represent the complete non-standard fo
an operator in the multiwavelet basis, can be expressed in terrag;afde [5].

Sincea‘"—xz2 is alocal operator, only interactions between neighboring intervals are involve
thatis, in (3.34)] — m=0, 1. Therefore, we can rewrite (3.33) as

k-1

ot =22 (loalij Sy 1 + [o0)ij S} + [0S} 41)- (3.35)
j=0

By introducing notations
Z'=¢.  Sh=Sm  Zh=2"[o_nlj. (3.36)
we can rewrite (3.35) in the form
Z' =3 S (3.37)

The transition matrixz},, has a block three-diagonal structure

[o1] [o0] [o-1] '
Sm=|. . o [oo [o-a] . . : (3.38)
[o1]  [o0] [o-1]
NxN
whereN = 2" and each blockd] is ak x k matrix. The matrix blocksdi]i; and p_1l;;
describe interactions with the left and the right neighboring intervals, respectively. St
an interaction is necessary to ensure the CFL condition when a time-dependent proble

under consideration.
The following are expressions for the matriced;f,

[o_1] = Ailo_a]' + Bulo_]",
[01] = ai[oa]' + Buloa]", (3.39)
[o0] = [o0]° + Bilool' + Bulool" + aioa]" + eufoo]",
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where
ol = DM@ — Q). o]l = (-DIH; Q).
[oa]l; = (D@ — @), [oal] = (-,
| ! (3.40)
[ooli; = —Tj (i + L)), [oolij = —TijQ;j,
loolil' = (DI (@ + ), [odlY =(DHHD;Q),
0 01 01
00010
0 3 i 00001
[oolij = [j () — Q)Lj, @ = 00000 (3.41)
0 00O0O
and

Nij =2v2i +1y/2j +1, Qi =j(j+1.

The representation of the second derivative contains four free parangtess; «, and
a). These parameters are related to the interaction with neighboring intervals. If we
them to be zero then only the matrix]© in (3.39) will remain, which represents the second
derivative operator in the Legendre polynomial basis.

The construction of functions of operators in the multiwavelet basis, in particular t
exponentiab? @/ s discussed in [3] in the case of constant coefficient operators.

I11.3. Representation of Differential Operators in the Multiwavelet Basis:
The Case of Variable Coefficients

Our goal is to construct a representation of the non-constant coefficient opere
E:a(x)% in the multiwavelet basis. Then the exponential opera@ys- e*', Q; =
(A% —T)(AtL)7, etc., can be computed via the generalized scaling and squaring metl
described in Section 11.3. It will be shown below that although the oper@tpase expressed
in terms of the local operatdt they are represented by global matrices in accordance wi
the global nature of these operators.

In this paper we concentrate on the construction of operators Miisebspace (that is,
on the finest scale) to illustrate the main traits of our approach. We note that since the sce
functions for the multiwavelet basis are the (scaled and shifted) Legendre polynomials,
multiwavelet method on the finest scal is equivalent to the multidomain Legendre
method.

The representation on the finest scale is an essential element for constructing the
tiresolution representation of operators in the non-standard form, because the mati
representing an operator on coarser scales are expressed in terms of the matrices «
finest scale [5]. Unlike the constant coefficient oper%zerthe operator:l(x)a"’—xz2 is not ho-
mogeneous and thus the scaling property (3.34) for the representations on different s
does not take place. Therefore, the corresponding matrices must be computed on each
independently. This will be a subject of our future work.
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We emphasize here again that the motivation for having a multiresolution representa
of operators is that the corresponding matrices are sparse, unlike their representatior
the finest scale, which are typically dense (or even full for the global operatorg jljke

Consider a twice differentiable functioh(x). In order to represent the functiorigx)
and2 ax2 f (x) in the subspacvﬁ, we expand them into the bas'tﬁﬂ x)}

2"—1k-1

f00 =" sieh, (3.42)

=0 j=0
2M-1k-1

82 n_n
ﬁf(x) = ZZC,’|¢]|(X)- (3.43)

I=0 j=0

Similarly, the functionsa(x) anda(x)% f (x) are represented Mﬁ by the expansions

—1k-1

a(x) = Z > i (), (3.44)

=0 j=0
M-1k-1

92 .
a5 5100 =3 > )00 (3.45)

I=0 j=0
The operatocC:a(x)(,,“’—xz2 is represented in the subspa¢g by the transition matrix,

[rin.], which connects the expansion coefficientsfgk) and those oﬁ(x)% f(x),

—1k-1

§|I ZZ rIm ij Jm (3-46)

m=0 j=0

Projecting both sides of Eq. (3.45) ongf)(x) and using (3.44), (3.43) we obtain

. -1 (141
gi? - Z Z é-Jm Jm’/ ¢|T(X)¢?m(x)¢?/m’(x)dx
mm'=0 j,j'= "l
2"-1 k-1
=223 Y ol b / ¢ (0; (05 (X) X
m,m'=0 j,j’=0
=22 Z tijj iy, (3.47)
j.j’=0
where we defined a triple matrix
1
tijj: =/0 B (X)9j (X)pj (X) dX. (3.48)

Introducing a block-diagonal matrix],

k-1
9], =Dt (3.49)
=0
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and using (3.32), (3.34), and (3.35), we can rewrite (3.47) as

k—1
§.| _2n/2z g’ .,C“

k-1 2"-1
= 2n/2 [gm [U|rl]ﬂ]1 JSJn|
j,i’=0 m=0
k-1 1
= 252 > o'y lor-mlis)- (3.50)
j.j’=0 m=-1

Thus, the transition matrix sought is

k-1
[ri];; 25”/22 o [ormly,  mM=0,%1 (3.51)

We note that since the matrig]]] is block-diagonal, the transition matrix],] has the same
block three-diagonal structure as the matef, ] in (3.38).

The exponential of the operat@,t“, is represented in the subspa¢f by a dense
N x N matrix, whereN = 2"k = Nk. Indeed, the approximation (2.13) of the exponentia
using a Taylor expansion, projected o, reads

[Em)ij = [8m);; + AulrR];;.  Lm=1.... 2% j=1..k (3.52)

where [E]},] stands for the matrlx representation of the oper@eiAt, £) = el in VK,
[r] ] represents the operatér= 2 5z and B, 1 is a notation for theN x N identity matrix.
Since the matrixr,] is a block three-diagonal, the same is true for the matig,I.

To compute the exponential opera@j(AtL), whereAt =27 Aty, the matrix [E]},] must

be squared] times. Each squaring of a block three-diagonal matrix results in a matr
with more non-zero blocks. Evidently, for the number of squaring sfefasge enough,
the matrix [E;?n]2J will be dense, in agreement with the global nature of the exponenti
operatoreAt(@?/6x)

When solving a time-dependent problem (2.1) with the linear opet&tor= a(x)aa—xzz,
the matrix [E{}n]2J can be precomputed and stored since the variable coeffia{gntis
assumed to be independent of time. This precomputational step re@.ail&ss) operations
(multiplication of twoN x N matricesJ tlmes) At each time step aN x N matrix is
applied to anN-length vector. This requwe@(N ) operations per time step. A far more
efficient approach for computing the differential operators and functions of operators in
multiwavelet basis is discussed in Section V.

We notice that the above constructions of the operatarsde®! ?*/*x*) do not incorporate
the boundary conditions. Thus, if at the beginning the funaiion satisfies some boundary
conditions, the successive application of the operatdf*/*** will not preserve these
conditions. We will address this point in Section IV.

The following numerical test illustrates the above algorithm.

ExampLE 1. Linear heat equation

Ut (X) = a(X)Uyx, x €0, 1] (3.53)
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with the Dirichlet boundary conditions
u(, t) = qu(t), ud, t) = ga(t). (3.54)

Equation (3.53) has the exact solution
uef(x, t) = e #eX/2H, (x), (3.55)

where H,,(X) is the wth Hankel polynomial. This solution corresponds to the variabl
coefficienta(x) = /(2w 4+ 1 — x?) in (3.53).
The time stepping algorithm (2.5) for the linear equation (3.53) reduces to the form

2
Unsr = €"Un,  L=200 5. (3.56)

The numerical results below are obtained fioe 1, w = 4, Ha(X) = 16x* — 48x2 + 12.

In Fig. 1 we plot the pointwise error at the tinte= 2.09x 1072 for At =106 x 27,
N =32, k=5; the parameters of the second derivative operator in (3.39%are-0.6,
B =0.6, o) = B =0.5 (these parameters are found to be the optimal ones; that is, tf
provide the best accuracy for the computed second derivative). Since the numerical
cedure, as it is described so far, does not provide any explicit treatment of the bou
ary conditions, the error on the boundaries grows and propagates into the region as
evolves.

2e-05 T T T T T T T T T

-2e-05

-4e-05

error

-6e-05

-8e-05

-0.0001

_000012 1 1 1 1 1 1 1 1 L
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
X

FIG. 1. Pointwise error at =2.09 x 1072, The error propagates from the boundaries into the region.
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IV. PENALTY PROCEDURE ON THE BOUNDARIES

To enforce the boundary conditions (3.54) we implement a penalty procedure sugge
in [12, 11]. The penalty term is introduced as a forcing in the evolution equation

U = a(Xuxx + fe(x,t),  xe€l0,1], (4.1)
where the functionfg (X, t) is defined as

fe(X, t) = —12:Q~ (O[u(0, t) — g1 (1)] — QT (X)[u(L t) — g(1)]. 4.2)

Q™ (x) and Q*(x) may be defined as delta functions at the left and the right boundarie
respectively. However, for numerical implementation it is convenient to define them
continuous functions. For example,

Q)= Qfx) =e*™, (4.3)

The parametex must be large enough th@* (x) are well localized near the boundaries.

The amplitudes;, 7, > 0 are positive constant parameters. The sign in (4.2) is chos
so that if the deviation, say, on the left boundarg), t) — gi1(t), is positive, then the sign
of the forcing term (and the concomitant time derivativg/dt) is negative, and vice versa.
Similarly on the right boundary. Thus, the forcing term strives to recover the prescrib
boundary values. The coefficients t» must be large enough to stabilize the time marching
procedure. However, when they are too large the computation becomes unstable (se
next section). In the examples belayw= 7, = 1y,

More general boundary conditions can be treated in a similar way using the above per
procedure. Namely, if the boundary conditions are given in the form

au(ov t) - IBUX(O7 t) - gl(t) = 07 (4 4)
yu(d t) = dux(Lt) — ga(t) =0, '
then in (4.2) the expressions in brackets must be replaced by those in the left hand sid
(4.4).

IV.1. Numerical Test with Penalty Procedure on the Boundaries

Now we turn back to Example 1 and compute the solution using the penalty proced
as described in Section IV. For the time discretization we use the second-order exp
ELP scheme described in Section 1.2, whé¥e= fg(x, t), along with the scaling and
squaring method of Section 1.3 for computing the quadrature coefficigrtatL). The
space discretization is performed via the method of Section 111.3.

The pointwise error in the numerical solution is plotted in Fig. 2 fpe=25, At =
(8. x10°7) x 2/, N =32 (number of subintervalsk=>5 (order of multiwavelets)y, =
—0.6, B = 0.6, oy = By =0.5 (parameters of the second derivative operator) at two ir
stancest; = 2.09 x 10-2 andt, = 4.1 x 1072, In this case the amplitude of the penalty term
17y IS too small so that the error loosely “floats” in a wide range: whéd t) andu(l, t)
in (3.10) deviate too far from their prescribed positiomgt) andg.(t), the forcing returns
them back.
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FIG. 2. Pointwise error when the penalty term in (4.1) has a small amplityde 25.

In Fig. 3 the pointwise error is plotted fog = 10%, At = (8. x 107) x 2/, N =32,k =5,
and at = 2.9 x 1072. Inthis case the amplitude of the penalty term is high enough to restre
the error on the boundaries within a small limérror < 1.107°.

However, for a given set of parametegscannot exceed some criticalvalue; otherwise
the computation becomes unstable. Figure 4 demonstrates the region of stability or
plane of parametergy,, At) for N =32, k=5. The stable time marching corresponds tc
the part of the region below the curve. Ras 107° the time marching is unstable due to
CFL restriction on the time stefat at the given resolutiol = Nk = 160.

Although the error on the boundaries remains small due to implementation of the pen
procedure, inside the region it grows slowly with time. The maximal relative error is plotts
inFig. 5forAt = (8. x 10°7) x 27, k=5, N = 16 (solid line). The reason for such a growth
of the error is that the parameterin (3.55) (the rate of decay), is slightly different for the
numerical and exact solutions. As a result, both solutions slowly deviate from one anof
with time. The boundary conditions are fixed by the penalty procedure so that the errol
the boundaries (dashed line) remains small.

In order to convince ourselves that the present algorithm provides a stable long-time in
ration, we considered the solution of the linear heat equation driven by the fdr¢ing),

Ur=a(X)uxx + f(x, 1), x €10, 1], (4.5)
where

u®f(x, t) = cos 2rt cos 2r(x — 0.12),

ax) = X, (4.6)

fx,t) = fa(x.t) + ulh(x, t) — apouel(x, 1),
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FIG. 3. Pointwise error for a large penalty term,= 10%.
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FIG.5. Evolution of the maximum relative error inside the interval (solid line) and on the boundaries (dast
line) for example (5.1).

and fg is the penalty term defined in (4.2). The error oscillates within a small range
values 15 x 1078 < error< 6.5 x 1078. (See Fig. 6.)

V. PENALTY PROCEDURE ON THE INTERFACES

As we pointed out in Section Il1.2, the second derivative operator is represented in
subspac® by a block three-diagonal matrix. The exponential operatdf, £ = a(x) 33—;
computed via the scale and squaring method, is representéflog a dense matrix. The
computation of such a matrix requir€(J N3k3) operations, wherd is the number of
squaring stepN = 2" is the number of subintervals, akds the order of multiwavelets.
When a time-dependent problem is solved, making a time step iNfrgpace requires
O(N?k?) operations.

In this section we describe a much more economical way of constructing the sec
derivative operator and the exponential opereféf in the subspaceX. Such a construction
results in an algorithm whose computational complexity is proportional to the number
subdomainsN. The saving in computational complexity (operation count and memo
storage) is especially noticeable for two-dimensional problems; see Section VI.

We recall that the full matrix, representing the exponential opergtdrin VK, results
due to repeated squaring of the block three-diagonal matrix (3.38) for the second derive
operator;—;. As was mentioned in Section 1l1.2, the off-diagonal blocks;] and [o1]
are responsible for the interaction with the neighboring intervals. Such an interactior
necessary to maintain the continuity of the solution and its first derivative on the interfa
when solving a time-dependent problem.
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FIG.6. Evolution of the maximum error for the solution (4.6) generated by forcing. The number of time ste
is about 26,000.

The idea underlying our new approach consists in treating the interface conditions
a separate procedure, without incorporating them into operators. Thus, we considel
second derivative operator in théock-diagonalform

. [(To] . .
Zlnm =1 . . [O‘o] . . . (5.1)
[o0]
N x N
The crucial advantage of this form over (3.38) is that squaring of such a matrix keeps
block-diagonal structure. As a result, the matrix of the exponential operator in the subsy
VK is also block-diagonal,

[Ef] = dimlEi], (5.2)

where
] k-1
[B] = [3]2 , [Q]ij = ‘Sir} + At [rln]ij ’ [rln}ij = 25n/22 [g|n]ij,[0'o]j'j, (5.3)
=0

andgj} is thek x k identity matrix (compare with the corresponding formulas (3.51) an
(3.52) when the previous block three-diagonal form of the second derivative mzpx

is used. The computation of the matri[],] in (5.2)—(5.3) is accomplished i®(J NK®)
operations, and the application of this matrix to Mik-length vector require®© (Nk?)
operations.
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If we apply this operator at each time step when performing the time integration, the c
continuity in the solution and its first derivative will appear and grow rapidly at the interfa
pointsx, =27"l,1 =0, ..., 2" -1, due to the lack of interaction between the neighborin
intervals. In order to preserve the continuity of the solution we apply a penalty proced
on the interfaces similar to that described in Section IV for the boundaries. Specifically,
introduce the forcing term in the form

f(x,t) = fg(x,t) + f(x,1). (5.4

Here fg(x, t) is the boundary term defined in (4.2). The interface tdfix, t) is defined
as

-1
fi(x,t) = Z (A| g X% + B e"\(’?'“_x)), (5.5)
1=0
where
Ag = Bx»_1 =0,
ooy | — dux) =
A| :_Tf<u()(xl)_u|)+rd< dX _d|), | 750, (56)

dU(I)(YH-l) T

B = —7¢ (U (X+1) — Uip1) — td( ix d|+1>, I #2" -1

Herer; >0, 7q > 0 are the constant quantitias?’ (x) is a restriction tou(x) on thelth
interval

Mo JU), XX, X4]
! (X)_{O, otherwise

U andd, are the mean values of the functiaix) and its first derivativecf—xu(x) on the
interfacex = X, that is,

_ 1 _ 1

=2 uP00 +u'P 0], g Ui =5 P00 +u* 0], (5.7)
— 1[du®x)  du'D(x) - 17du®(x)  du®+D(x)

d = 2| Tdx T ax N Gie1 = 2| Tdx T dx - 58

The structure of the forcing is shown in Fig. 7. In each subinterval there exist t
exponential functions attached to the left and the right interior boundaries (interfaces)
decaying away from the boundaries with the rateThe amplitudesA; and B, of the
exponentials are proportional to the jumps in the solution and its first derivative acr
the interfaces. Sincgu/at « f (X, t), deviations in the solution (from their mean values a
the interfaces) appear with a negative sign so that the forcing suppresses these devia
The selection of a sign at the terms that contain jumps in the derivative (the terms in (!
proportional tory) is not so obvious and requires more consideration.

Suppose that the solution is distorted as shown in Fig. 8 so that the first derivative
jumps on the interfaces. Itis easy to see that in thisda$e /dx < du® /dx atx = X, and
du®/dx < dul*+D /dx atx = X,.1. Therefore, the signs of the deviations on the interface
are(du®(x)/dx —d,) > 0 and(du® (X 1)/dx — di11) < 0. On the other hand, the sign of
the forcing must be positive for both interfaces in order to restore the solution to the smc
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Z
FIG. 7. The structure of the forcing terrfy.

shape. This dictates the proper choice of signs at the corresponding forcing terms in (!
Note that the forcing term in (5.5) is given in the physical domain. The transformati
into the VK subspace (the Legendre coefficients domain) can be obtained via (3.20) -
(3.23)—(3.25).

V.1. Examples

We illustrate the above approach using the block-diagonal matrices for the second de
tive and the exponential operators, along with the penalty procedure on the boundaries
interfaces, by the following examples.

ExamPLE 2. Linear heat equation with the forcing term (4.5). The solution of referenc
is given by

uf(x, t) = cosmt cosm(x — 0.12), (5.9)

+

Z T4

FIG. 8. Smooth solution (solid line) and the disturbed solution (dashed line) having a discontinuous fi
derivative on the interfaces.
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FIG. 9. The maximal numerical error for the example (5.9) when using Approach | (dashed line) a
Approach Il (solid line).

the variable coefficient bgi(x) = x. The driving forcef (x, t) and the boundary conditions
u(0, t) = ga1(t), u(l, t) = g2(t) are computed accordingly. In time we use the second-ord
explicit ELP scheme.

The maximum pointwise error as a function of time is plotted in Fig. 9 (solid line) fc
the parametersl =32, k=5, At =1.10"" x 27, 1, =ty =40,000,74 =400, A =6. The
dashed line gives the error obtained by the previous approach (Approach I) based or
use of a block three-diagonal matrix for the second derivative operator (with the pare
etersa; = —0.6, 8| = 0.6, o) = B =0.5) and correspondingly the dense matr&[] in
(3.52) for the exponential operatet'~. Both approaches give approximately the same nu
merical errors. However, the latter approach, using the penalty procedure on the interf
(Approach Il), is faster by a factor @ (N?) than Approach | when computing the expo-
nential [E]},] in the subspac¥¥, and by a factor oD (N) per time step when performing
time integration.

ExampPLE 3. The Burgers equation. Consider the periodic solutions of the Burge
equation

Ut = vUyxy — Uy, x €10, 1]. (5.10)

The exact solution is given by the formula (Whitham, 1974)

yteh) = _p$xXZCtIH D) (5.11)
p(x—ct,it4+1)° '
p(x,t) = Z g i/t (5.12)

N=—00
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FIG. 10. Solution of the periodic Burgers equationtat 0 andt =1/16;v=0.1/7,c=4.

Figure 10 shows the numerical solution foe4,v=0.1/7, andr =1/(2r) (these are
parameters of the standard test case). The profile moves at thecspeed he pointwise
numerical error for the solution &t=1/16 is plotted in Fig. 11.

The spatial resolution and the parameters of the penalty term are chosen as in the pre
example. For such a choice the temporal errors are dominant over the spatial ones.
maximum numerical error is given in Table 1V for the explicit first-, second-, and thirc
order ELP schemes faxt =104, t =1/16 andc=0, c=4.

0.000010 - : . . r
0.000005 _
5
&
8 0.000000
z
£
&
—0.000005 g
-0.000010 ) . " :
0.0 02 0.4 0.6 0.8

FIG. 11. Pointwise error for the solution of periodic Burgers equation-atl/16.
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TABLE IV
Maximal Numerical Error in the Solution of the Periodic Burgers
Equation at Time t=1/16; v =0.1/7,c=0and 4

C €1 €7 €3
0 9.6 4) 36 (C7) 5.9 (10)
4 3.0(2) 4.2(4) 6.5 (6)

We conclude this section by making a remark on the choice of parameters of the pen
procedure that provides stable time integration. Since a rigorous stability analysis is
available at the moment, these parameters can be found experimentally for a given s
resolutionN, k, time stepAt, and the numbel of squaring steps in the scaling and squaring
method. For example, the following sets of “stable” parameters can be used (along with
set in the above examples):

(1) N=32 k=5 At=110°x 25, 7, =1¢ =14,400,7g = 64,1 =6;
(2) N=32 k=5, At =6.10°5 x 26, 7, = 71 = 10,000,74 = 64, 1 = 5.

Note that once the stable parameters are found (say for an example where the soluti
known in advance) they could be used for stable computation of unknown solutions as
stability properties depend on the space and time resolution rather than on the partic
form of a solution.

VI. TWO-DIMENSIONAL PROBLEMS

The performance of Approach Il is especially advantageous as compared to Approa
in multidimensions. Thus, for two-dimensional problems the cost of computing the exy
nential operatoe?"*, £ =a(x, y)(a‘r’—xz2 + %) in the subspaceX using Approach | amounts
to O(N®k®) operations, and performing a time step requidedN“*k*) operations, where
N2 is the number of subdomains (boxes). With Approach I, computing the exponent
operator require® (N2k®) operations, and making a time step tak®dN?k*) operations.
Therefore, for a fixed order of multiwavelets,the computations in the subspa¢ghave
the complexity that is proportional to the number of subdomaifs

A two-dimensional heat equation reads

U (X, y) = a(x, y)Aux, y) + f(x,y), inQ =0, 1] x [0, 1], (6.1)
whereA = ;’—Xzz + (,3722

The generalization of the above algorithm to the two-dimensional case is straightforwe
A computational regiof2={0<x <1,0<y <1} is divided intoN x N, N =2" square
boxes, as shown in Fig. 12.

The projection of functions onto the subspatigreads

2"-1 k-1

FOGY =D D s imdl 005, (6.2)
I,m=01i,j=0
2"-1 k-1

Af( X)) = Y > &l imdi (0P (), (6.3)

1.m=0 i,j=0
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FIG. 12. Subdomains and the Legendre nodes.

-1 k-1
ax, y) = Z > afl imd 08N (Y), (6.4)
I,m=0i,j=0
2"-1 k-1
a AT YY) = D0 D 8 il 006 (¥). (6.5)
I,m=0i,j=0
A transition matrix g1 1ij.i/j- is defined as
) k-1
il jm = Z [Ulm]”.JSlJm (6.6)
i",j’=0

It has a block-diagonal structure with the number of blocks equal to the number of s|
domains, 2", and the size of each block k€ x k. Thus, the transition matrix transfers a
block ofk* elements of] jm to @ block ofk* elements ofﬂ,jm for each subdomaid, m),
without interaction between the neighboring subdomains.

We project both sides of (6.5) onto the basis functi@h&lw?m (X2) and use (6.3), (6.4)
to obtain

k-1 k-
“n _ . «n n
Gl jm = Z Z iiir LG jm @i, jrm (6.7)

wheret;; i~ is the triple matrix defined in (3.48).
Next, we introduce a block-diagonal transition matrix for the second derivative operat

k-1
& jm = Z [O—Irljn]ij,i/jfar)l,j/m' (6.8)
i",j'=0
We also introduce a matrixgf, ],
g|m I] |J Z t|| |/t“ J Ol//| J//m (69)

7j"=0
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Using (6.8) and (6.9) we rewrite (6.7) as

k—1

Ei?,jm =2" Z [glnm]ij,i’j';ir/]lsj’m

i,j’=0

=

-1

[Ul?n]ij,irj@irjl,j'm’
i".j=0

where

k-1
[GI ij,i’j =2 Z glm i7" |n ]i!/j//,i/j/ (610)

I” i”=0

is the transition matrix sought.
The penalty term on the interfaces in two dimensions has the form

-1 k
flx,y,t) = Z Z (Ai(lm)efx(xfil) + Bi(lm)e’“i'*rx))(?(y _ yi(m))
I,m=0 i=1
-1 Kk
+ )3 (cMe o 4 pliMet G5 (x — x), (6.11)
I,m=0i=1

wherex, ym are the coordinates of the interfaces, aipl)d yi(m) are the local Gauss—Legendre
nodes (3.25). The amplitudeﬂé'm) and Bi('m) are proportional to the jumps in the function
and its first derivative across the interfases X, as in (5.6), whereas the amplitudé%m)
and Di('m) are proportional to the jumps across the interfagesyn,. The structure of the
forcing in two dimensions is shown in Fig. 13.

VI.1. Numerical Algorithm

Here we summarize the main technigues incorporated in the present algorithm.

(il+ls gm)

FIG. 13. The structure of the forcing in the subdomax ;1] x [V, Ym1l-
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1. The time discretization methdslbased on an explicit ELP scheme with the stability
restriction on the time stept ~ O(h~1), whereh is the spatial mesh size.

2. A generalized scaling and squaring methiedised to evaluate the operator-valued
quadrature coefficients of the ELP scheme.

3. The discretization method in spagekes use of the expansion of functions into the
multiwavelet basis and representation of operators in this basis. This involves:

—decomposition of a computational domain intb subdomains (in each spatial
direction);

—approximation of local pieces of functions by the Legendre polynomials up to tl
orderk — 1 (the scaling functions);

—computing the Legendre coefficients (which constitute the representation\if the
subspace) using the Gauss—Legendre quadrature formula;

—the discrete fast wavelet transform using the two-scale equation for computing
multiwavelet coefficients (not implemented yet);

—computation of the transition matrices for the operators with variable coefficien
which involves multiplication of large size matrices.

4. The boundary condition®irichlet, Neumann or mixed) are imposed using a penalt
procedure in the form of an additional non-homogeneous (forcing) term in the evoluti
equation.

5. The penalty procedure on the interfaq@sterior boundaries) is implemented to es-
tablish the interaction between neighboring subdomains. This allows for drastic simpl
cation of differential operators in the multiwavelet basis. For example, on the finest sc
the (global) exponential functions of operators are represented by block-diagonal matr
rather than by full matrices.

VI.2. Two-Dimensional Example
We illustrate the algorithm in two dimensions by the following example.

ExAMPLE 4. Linear heat equation with the forcing (6.1). The forcing tefigx, y)
corresponds to the exact solution

u'®f(x, y) = cosrt[cosm(x — 0.12) cosr(y — 1.3)]. (6.12)
The complete forcing including the boundary and the interface penalty terms has the fi
f(x,y) = feX, y) + fi(x,y) + F(x, y). (6.13)

In Fig. 14 the maximum absolute error is plottedAdr=10"" x 2/,k=5 N=32,A=6
(the exponential factor in (6.11), and several sets of vatgias , andzy (the amplitudes of
the penalty termsg, f|)): to=17 =10%, g =225 (line 1);tp =71 =810Q 74 =225 (line 2);
andt, = ¢ = 640Q 74 = 196 (line 3). These plots demonstrate the stable and accurate loi
time computation (they are obtained by 30,000 time iterations).

The following sets of parameters can be also used for stable numerical integration (t
give a maximal error of about 16 for the present example):

N=8 k=4 At=110"°x 25 1, =1¢ =160Q g =25, A = 14; or
N=16,k=4, At=110°x2* =1y =160Q 1y =25, A =7.
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FIG. 14. The maximal pointwise error for the example (6.12). The numerical parameters are specified in
text.

VIl. CONCLUSIONS AND FURTHER DEVELOPMENTS

We have presented an efficient numerical algorithm for the solution of nonlinear tin
dependent problems with variable coefficients in one and two dimensions. The time |
cretization method employs new numerical schemes with improved stability properti
The space discretization makes use of the expansion into multiwavelets. The boundary
ditions and the continuity on the interfaces (interior boundaries between the neighbol
subintervals) are imposed via a penalty procedure. For a fixed order of multiwavelets (o
of polynomials or number of local grid points in each subdomain) the operation count |
time step is proportional to the number of intervals.

We have concentrated on the implementation of the multiwavelet method on the fir
scale. When implemented on the finest scale, this algorithm is equivalent to the multidon
Legendre method (the scaling functions of the multiwavelet basis are the scaled and sh
Legendre polynomials). Representations of operators on other (coarser) scales can be
puted via the representation on the finest scale using fast wavelet transforms [5]. That
be the subject of a future work.

The present algorithm can be extended to treat more complicated domains, for exan
channels with periodically excited boundaries or rectangles with two (opposite) curviline
boundaries. By a transformation of coordinates one can obtain a problem in plane (rec
gular) geometry with variable coefficient operators; see, for example, [13]. Such a probl
can be solved using the present method.

Although the algorithm is described in one and two dimensions, its extension to thr
dimensional problems is straightforward.
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The present algorithm, based on the multiwavelet technique, fits naturally the dom

decomposition ideology; therefore it can be easily parallelized.

=

REFERENCES

B. Alpert, A class of bases i for the sparse representation of integral opera®iaM J. Math. Anal24,
246-262 (1993).

. B. Alpert, G. Beylkin, R. R. Coifman, and V. Rokhlin, Wavelets for the fast solution of second-kind integr

equationsSIAM J. Sci. Statist. Comput4, No. 1, 159-174 (1993); Technical Report, Department of Com-
puter Science, Yale University, New Haven, CT, 1990.

. B. Alpert, G. Beylkin, and L. Vozovoi, Representation of operators in the multiwavelet basis, in preparati

4. T. M. Apostol, inCalculus(Wiley, New York, 1969), Vol. 2, Chap. 7.

10.

11.

12.

13.

. G. Beylkin, On the representation of operators in bases of compactly supported waididts]. Numer.

Anal. 29, No. 6, 1716-1740 (1992).

. G.Beylkin, R. R. Coifman, and V. Rokhlin, Fast wavelet transforms and numerical algoritt@asnim. Pure

Appl. Math.44, 141-183 (1991); Yale University Technical Report YALEU/DCS/RR-696, August 1989.

. G. Beylkin and J. M. Keiser, On the adaptive numerical solution of nonlinear partial differential equations

wavelet bases]. Comput. Physl32 233-259 (1997).

. G. Beylkin, J. M. Keiser, and L. Vozovoi, A new class of time discretization schemes for the solution

nonlinear PDEs, PAM Report 347, March 1998; als€omput. Physto appear.

. |. Daubechies, Orthonormal bases of compactly supported wavetatsn. Pure Appl. Matht1, 909-996

(1988).

U. Frish, Zhen Su She, and O. Thual, Viscoelastic behaviour of cellular solutions to the kuramoto—sivashit
model,J. Fluid Mech.168 221-240 (1986).

D. Funaro and D. Gottlieb, Convergence results for pseudospectral approximations of hyperbolic systen
a penalty type boundary treatmektath. Comput57, No. 196, 585-596 (1991).

J. S. Hesthaven and D. Gottlieb, A stable penalty method for the compressible Navier—Stokes equatio
Open boundary condition§|AM J. Sci. Compu&79-612 (1996).

L. Vozovoi, M. Israeli, and A. Averbuch, Multidomain local Fourier method for PDEs in complex geometrie
J. Comput. Appl. Math66, 543-555 (1996).



	I. INTRODUCTION
	II. TIME DISCRETIZATION METHOD
	TABLE I

	III. DISCRETIZATION IN SPACE. MULTIWAVELET BASIS
	TABLE II
	TABLE III
	FIG. 1.

	IV. PENALTY PROCEDURE ON THE BOUNDARIES
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.

	V. PENALTY PROCEDURE ON THE INTERFACES
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	TABLE IV

	VI. TWO-DIMENSIONAL PROBLEMS
	FIG. 12.
	FIG. 13.
	FIG. 14.

	VII. CONCLUSIONS AND FURTHER DEVELOPMENTS
	REFERENCES

